Frobenius-Schur indicators for subgroups and the Drinfel’d double of Weyl groups
نویسندگان
چکیده
منابع مشابه
Frobenius-schur Indicators for Subgroups and the Drinfel’d Double of Weyl Groups
If G is any finite group and k is a field, there is a natural construction of a Hopf algebra over k associated to G, the Drinfel’d double D(G). We prove that if G is any finite real reflection group, with Drinfel’d double D(G) over an algebraically closed field k of characteristic not 2, then every simple D(G)-module has Frobenius-Schur indicator +1. This generalizes the classical results for m...
متن کاملCongruence Subgroups and Generalized Frobenius-schur Indicators
We define generalized Frobenius-Schur indicators for objects in a linear pivotal category C. An equivariant indicator of an object is defined as a functional on the Grothendieck algebra of the quantum double Z(C) of C using the values of the generalized Frobenius-Schur indicators. In a spherical fusion category C with Frobenius-Schur exponent N , we prove that the set of all equivariant indicat...
متن کاملTwisted Frobenius–schur Indicators for Hopf Algebras
The classical Frobenius–Schur indicators for finite groups are character sums defined for any representation and any integer m ≥ 2. In the familiar case m = 2, the Frobenius–Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bu...
متن کاملHigher Frobenius-schur Indicators for Pivotal Categories
We define higher Frobenius-Schur indicators for objects in linear pivotal monoidal categories. We prove that they are category invariants, and take values in the cyclotomic integers. We also define a family of natural endomorphisms of the identity endofunctor on a k-linear semisimple rigid monoidal category, which we call the Frobenius-Schur endomorphisms. For a k-linear semisimple pivotal mono...
متن کاملSchur–weyl Duality for Orthogonal Groups
We prove Schur–Weyl duality between the Brauer algebra Bn(m) and the orthogonal group Om(K) over an arbitrary infinite field K of odd characteristic. If m is even, we show that each connected component of the orthogonal monoid is a normal variety; this implies that the orthogonal Schur algebra associated to the identity component is a generalized Schur algebra. As an application of the main res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2009
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-09-04659-5